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1. INTRODUCTION/AIMS AND GOALS

The aim of the project was to explore, define and assess the possibilities of

optical distributed sensing for feedback control. This type of sensors may have some

impacts in e.g. the dynamic control of deformable structures (antanae, mirrors) and the

monitoring of small displacements (plates, shells).

Conceptually, such a sensor can be divided into three distinct parts: data

acquisition, data processing and control design. Analogue optical techniques, because

they are noninvasive and afford massive parallelism may play a significant role in the

acquisition and the preprocessing of the data for such a sensor. Assessing these

possibilities was the aim of the first stage of this project.

The scope of the proposed research was limited to two specific points: (1) the

characterization of photorefractive resonators and the assessment of their possible use as

a distributed optical processing element (research to be carried out by G. Indebetouw)

and (2) the design of a control system utilizing signals from distributed sensors

(research to be carried out by D.K. Lindner).

This report summarizes the results of the study of photorefractive resonators. It

is presented as follows. A brief summary of the main results of each investigation

carried out and their relevance to the aim of the project will be presented. These

include a numerical and experimental study of the resonator below threshold (section

2.2), an experimental study of the effect of the resonator's transverse confinement on its

dynamics above threshold (sect. 2.3), a numerical study of the resonator above

threshold using a modal expansion approach (sect. 2.4) and the experimental test of this

model (sect. 2.4.3). A detailed account of each investigation, including methodology

and analysis of the results can be found in the four attachments of section 3. (Three

reprints of published papers and one preprint of a paper recently submitted for

publication). Summary and conclusions are resumed in section 4.



2. PHOTOREFRACTIVE RESONATORS (PCR)

2.1 SYSTEM UNDER STUDY

In order to keep the problem as simple as possibleand to extract itsmost saiicnt

features,it was decided to study a PCR with the simplest geometry, i.e.:a linear

resonator bounded by an externally pumped photorefractive phase-conjugate mirror

(PCM) with gain at one end and a dielectricplanar mirror at the other end. This

system isdescribed in detailsin the reprintsof sections3.1,2 and 3.

For the study below threshold, a plane wave approach was adopted and the

resonator had no intracavity elements. Above threshold, the beam's transverse

distribution plays a criticalrole and some intracavity optics and apertures were

included to control the resonator'stransverse confinement. This kind of resonators,as

well as resonators with more complicated geometry (e.g.rings or multiple crystal)may

be found useful for temporary image storage, realtime holographic recording, and as

part of a recognitionor associativesystem.

2.2 RESONATOR BELOW THRESHOLD

2.2.1 Model

The PCM is an externally pumped photorefractive crystal with a slow response

(e.g. BaTiO3). The standard model describing the electro-optic properties of such a

crystal was developed by Kukhtarev (Ferroelectrics, 22, 945, 1979). The resonator

provides suitable feedback for the oscillating waves and defines the boundary conditions

at the crystal entrance face. The fields in the crystal and resonator are assumed to be

plane waves. This single-mode approximation is known to be crude but is necessary if

analytic solutions are to be derived. Nevertheless, the model did allow for two distinct

interaction regions in the crystal, a feature which had not been included in previous

analysis of PCRs.



2.2.2 Results

For a material with a slow response, the steady state solution can be extended to

define a transfer function of the cavity and analyze its stability. With reasonable

approximations, analytical solutions were obtained from which the domain of instability

of the resonator could be defined. The transient build-up and decay of the cavity fields

were then analyzed, using the full Kukhtarev's model, as a function of the system's

parameters (i.e.: PCM gain, cavity and PCM losses, pump ratio and probe ratio). Sets

of curves describing the behaviour of the resonator's build-up and decay rates as

functions of these parameters were obtained from this analysis. The trends revealed by

this numerical analysis were verified experimentally.

2.2.3 Conclusions

The main result of this analysis was to define a procedure by which the PCR can

be modeled (at least within the limit of the plane wave approximation) and to describe,

a simple means of analyzing the PCR's stability. The trends revealed by the numerical

analysis were verified experimentally but only qualitative agreement was found. There

are several possible reasons for this: The exact parameter values for the photorefractive

crystal used in the experiment were not known; The Kukhtarev's model is based on

simplifying assumptions (single carrier type, single photorefractive species) which are

known to be only crudely valid for BaTiO3; Gaussian beams were used in the

experiments rather than plane waves. In spite of the model's shortcomings, the results

of this analysis could be helpful in the initial design of an optical system using PCRs.
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2.3 DYNAMICS ABOVE THRESHOLD: TRANSVERSE CONFINEMENT

2.3.1 Transverse profile and optical vortices

If photorefractive resonators have to be used for image storage and processing,

the behaviour of the transverse amplitude distribution of the oscillating beam must be

understood. Well below threshold, the probe beam distribution determines the

resonator's beam profile. Above threshold however, when the PCM gain exceeds the

cavity losses, the beam profile depends strongly on the number of transverse degrees of

freedom of the cavity (i.e.: on its transverse confinement). An experimental study was

carried out to characterize this behaviour.

In order to control the cavity transverse confinement, an afocal geometry with

two intracavity pinholes in conjugate planes was used. The set up is described in

details in attachments 3.2 and 3.3.

The Fresnel number (F) of the resonator, the square of which is also its

space-bandwidth product, is a measure of the maximum number of transverse degrees

of freedom of _he oscillating beam.

As expected, the transverse complexity of the beam, as measured by the number

of lobes or pixels in the beam profile, increases as the square of the Fresnel number.

Except for the uniform profile obtained with very small Fresnel numbers, all the

patterns observed are dynamic with bright and dark areas executing a dance which can

be either periodic (for small F) or chaotic (for larger F). The main frequency of this

motion was found to be directly related to the build up rate of the cavity defined and

measured in section 2.2.

The most important result of this study was to reveal the presence and motion of

optical vortices in the beam. At a vortex, the field amplitude vanishes exactly and

around it, the wavefront is helical with a pitch of 27r per turn (vortex charge 4-1). The

number of vortices increases as the square of the Fresnel number. They nucleate



spontaneouslyby pairs of opposite charges in regions of large phase gradient and are

never static. They move around in the beam, repelling or attracting each other. They

can annihilate one another or disappear at boundaries.

- °

2.3.2 Spatiotemporal dynamics

In order to characterize the dynamics of the PCR as a function of its transverse

confinement, local time series of the intensity fluctuations were recorded at one point in

the transverse beam profile and were analyzed using power spectra and pseudo phase

space portraits. A rich variety of dynamical behaviours was observed. These range

from stable output (fixed point) at very small F, to periodic motion (limit cycle), to

periodic with an increasing by large number of subharmonics at larger F to aperiodic

and eventually chaotic at larger F. At some intermediate value of F, a behaviour

reminiscent of intermittancy was also observed. For these experiments, only the

Fresnel number was varied by changing the size of one of the two intracavity apertures.

All other parameters were fixed.

In order to further characterize one of the chaotic motion (i.e.: that observed at

F = 4.1), standard algorithms of nonlinear dynamics were applied to the experimental

data to calculate the correlation dimension and the entropy. The result, namely

D 2 ~ 5.2 and K 2 ~ 0.16 s -1, indicates that the chaos observed at this Fresnel number

may be deterministic. A spatial correlation index, which crudely measures the spatial

coherence of the beam was also measured and shown to drop sharply when the number

of vortices in the beam increases.

2.3.3 Conclusions

The results of this experimental study of the PCR allows one to characterize its

behaviour as a function of its transverse confinement. Except for very small Fresnel
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numbers, this behaviour is found to be complex. Particularly relevant are the dynamic

nature of the transverse beam profile and the role played by the vortices. It is clear

that this may have far reaching consequences when considering applications where the

PCR is used to store images. In order to be able to store a complex image the cavity

must have a large space-bandwidth product, thus a large Fresnel number. But at large

F, the spatiotemporal behaviour of the beam profile may become chaotic. For such

applications, means of locking or stabilizing the transverse profile must be found.

Although this possibility cannot be ruled out theoretically, we had no success so far in

trying to show that is was practically possible.

An entirely different aspect of this study has revealed the profound analogy that

seem to exist between the PCR and other, wildly different, dynamical systems (e.g.

fluid flow, physics chemical reactions, lasers,...etc.). This in itself is a fascinating

subject and the photorefractive resonator may offer a means of studying the dynamics

of other systems or of testing new theoretical conjectures.

w

2.4. SPATIOTEMPORAL MODEL

2.4.1 Modal expansion approach

In order to be able to make use of a PCR in the design of a sensor, reliable ways

of modeling its behaviour must be found, The main difficulty in doing this is the

dimensionality of the problem. To adequately represents the role played by the vor-

tices, the two transverse dimensions must be included in the model. It is in principle

possible to enlarge the Kukhtarev's model to include these dimensions, but its direct

integration would then require a prohibitively large computational budget. Instead, we

have tested a modal expansion approach which relies on the assumption that the optical

field in the nonlinear crystal can be expanded in a series of the empty cavity

eigenmodes and that the number of modes taking part in the dynamics is limited by the

cavity Fresnel number. Justifications for this assumption are given in section 3-4.



2.4.2 Numerical results

The modal expansion method was used to predict the Spatiotemporal dynamics

of a PCR with modest Fresnel number• As a control parameter for this study we chose

to use the off-Bragg mismatch parameter. This parameter measures the momentum

mismatch in the four-wave-mixing geometry of the PCM and controls the amount of

phase transfer in the four-wave interaction. A bifurcation diagram shows that, as this

parameter is varied, the PCR's dynamics changes from periodic, to quasiperiodic with

two or more incommensurate frequencies. For some specific parameter ranges, the

dynamics can also be chaotic or, in contrast, frequency locking may occur, leading to

quieter periodic motions.

One of the main advantage of the modal decomposition approach is that it

requires only a modest computational budget to characterize the full spatiotemporal

dynamics. As an example, the spatial coherence of the transverse beam intensity

fluctuations was studied this way. From this study, an unambiguous correlation

between the spatial coherence and the vortices trajectories could be established.

2.4.3 Experimental verification

Experiments were performed to confirm the validity of the modal expansion

approach (see section 3-4 for details). A PCR with a Fresnel number close to that used

in the numerical analysis was constructed and the experimental off-Bragg parameter

was used as a control parameter. A range of behaviours closely resembling the

behaviours predicted by the model was observed. These include periodic motions for

small off-Bragg parameter, quassiperiodic motions with two or more incommensurate

frequencies, aperiodic motions, chaos and frequency locked states.



2.4.4 Conclusions

The modal decomposition approach appears to be a reasonable way of modeling

the spatiotemporal dynamics of the PCR. It requires only a modest computational

budget and leads to useful physical insights concerning the vortices trajectories and

their role in the loss of the beam's spatial coherence as their number increases.

These preliminary results are encouraging but a number of points clearly need

further analysis. The most important one is that the choice of the modes which are

taking part in the dynamics is somewhat arbitrary in the model. In an experiment, the

slightest breaking of symmetry or any small anysotropy may either suppress certain

modes or enhance others. Our present state of knowledge of the detailed behaviour of

the PCR and the level of our ability to control all its parameters are far too crude for

predicting and modeling these factors.
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I feel that it is worthwhile to try to determine whether this idea is feasible or

not. Thus, for the remaining of the period funded by this grant, I propose to focus on

two issues. The first is to document, in full details all the results and findings learned

during the course of his project. This work will be the bulk of the PhD dissertation of

my student S.R. Liu. The second issue is to determine whether it is possible or not to

influence, by external means, the modes that are taking part in the PCR's dynamics.

This investigation should be experimental because the available models are too crude.

They will be carried out by myself with the help of a starting student who can use this

experience as a means of familiarizing himself with experimental methods.

.
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